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ABSTRACT: Forecasting a time series is generally done by using autoregressive 

integrated moving average (ARIMA) models. The main drawback of this technique is that the 

time series should be stationary. In reality, this assumption is rarely met. The Unobserved 

Component Model (UCM) is a promising alternative to ARIMA in overcoming this problem 

as it does not make use of the stationary assumption. In addition, it breaks down response 

series into components such as trends, cycles, and regression effects, which could be useful 

especially in forecasting the production of perennial crops. The present study was aimed at 

using UCM for annual national coconut production data from 1950 to 2012, which is non-

stationary, and to forecast the coconut production in Sri Lanka. Results revealed that both 

the trend components, level and slope, have non-stochastic processes. Further, it revealed 

that the level was significant (p=0.0001) and slope was non-significant (p>0.1). The linear 

trend model zero variance slope was found to be the best fit for the data with 11.3 years of 

estimated period of the cycle. The forecasted error for 2011 and 2012 were 1.08% and 

1.69%, respectively. From the fitted model, predicted annual coconut production for 2013 

was 2739.1 million nuts and the 95% CI is 2048.7 to 3429.5 million nuts. Thus, the use of 

UCM is recommended for annual data series, too. 
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INTRODUCTION 

 

Box Jenkins and to a limited extent the exponential smoothing techniques are commonly 

used in the analysis of time series in agriculture. Main drawbacks in these models are that, 

they are suitable only for the stationary series (Box et al., 1994), empirical in nature and fail 

to explain the underlying mechanism. It is not always possible to create a time-series 

stationary by differencing or by some other means. Hence, this approach could be limited to 

few data sets. Also, correlogram and partial auto correlation function specifying the models 

are not always very informative, especially in small samples. This could lead to inappropriate 

models and predictions.  
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Unobserved component model (UCM) is a promising alternative approach to overcome these 

problems (Harvey, 1996). It is also known as structural time series models and it is a flexible 

class of models which are useful for forecasting. It decomposes the response series into latent 

components such as trend, cycle and seasonal effect and linear and nonlinear regression 

effects. The saline feature of the UCM is latent components, which follow suitable stochastic 

models and it provides suitable set of patterns to capture the outstanding actions of the 

response series. UCM can also consist of explanatory variables. Apart from the forecast, 

structural modeling gives estimates of these unobserved components and it is of very useful 

in practical usage. UCM can handle intensive data irregularities too. It is very similar to 

dynamic models and also popular in the Bayesian time series (West & Harrison, 1999).  

 

Perennial crop production is influenced by environmental and management factors. It is quite 

hard to assume that the underlying parameters are consistent and difficult to capture the 

latent components by univariate ARIMA models. Harvey & Todd (1983) reported in detail 

the advantages of UCM over seasonal ARIMA. Ravichandran & Prajneshu (2001) compared 

the efficiencies of ARIMA and State Space Modeling utilizing all-India Marine products 

export data and Kapombe & Colyer (1998) studied that structural time series model to 

estimate the supply response function for broiler production in the United States using 

quarterly data.  Ravichandran & Muthurama, (2006) utilized UCM model to model and 

forecast the rice production of India. Even though the UCM has been used in actual scenario, 

there is hardly any use of UCM in forecasting perennial crop production. The aim of this 

study was to investigate the possibility of using UCM for modeling and forecasting annual 

national coconut production of Sri Lanka.  

 

 

METHODOLOGY 

 

Data used in the study 

 

Annual coconut production from 1950 to 2012 collected from Coconut Research Institute 

(CRI) in Sri Lanka was used for the study.  

 

UCM  

 

A UCM consists of trend, cycle, seasonal and irregular components, and specified of the 

form (Harvey and Stock, 1993).  

 

tttttY εωϕµ +++=
     (1)

 

where tt ϕµ ,  and tω denotes the stochastic trend, stochastic cycle and seasonal component 

respectively. Here tε
 
 is the overall error (irregular component), which is assumed to be a 

Gaussian white noise with variance 
2

εσ . Since the data used is annual, seasonal effect 

cannot be identified and thus the UCM for the data can be formulated of the form 

 

ttttY εϕµ ++=
     (2) 
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Estimating trend effect 

 
There are two different ways to modeling the trend component in UCM. The first method is 

by mean of random walk (RW) model, (3). The RW model can be formulated of the form 

(Harvey & Koopman, 2009). 

 

ttt δµµ += −1  ,
),0(..~

2

δσδ Ndiit    (3)  

 

The second method involves modeling the trend as a Locally Linear Time trend (LLT), 

which consist of both level and slope (Harvey, 2001). The trend, tµ is modeled as a 

stochastic component with varying level and slope and it can be formulated of the form, 

 

tttt δβµµ ++= −− 11 ;
),0(..~

2

δσδ Ndiit              (4a) 

ttt τββ += −1 ;  
),0(..~

2

τστ Ndiit                                    (4b)             

Where tβ
is the slope of the local linear time trend. The disturbances tδ

and  tτ
 are  

assumed to be mutually
 independent. Special cases of this trend model is obtained by setting 

one or both of the disturbance variances, 
2

δσ  and
2

τσ , equal to zero. If 
2

τσ  is set equal to 

zero, then the trend becomes linear (fixed slope). If 
2

δσ  is set to zero, then the subsequent 

model generally has a smoother trend. If both the variances are set to zero, then the resulting 

model is the deterministic linear time trend, 
 

 

tt 00 βµµ +=
      (5) 

 

 

Thus the reduced form of a LLM is the ARIMA (0, 2, 2) model. 
 

 

Estimating cyclic effect 

 

Cyclical function of time tϕ
 
with frequency λ  is usually measured in radians. The period of 

the cycle, which is the time taken to go through its complete sequence of values, is 2π / λ
.
  

A cycle can be expressed as a mixture of sine and cosine waves, depending on two 

parameters,
 
α  and β

 
(Harvey & Stock, 1993).  

Accordingly,
 

tϕ  = tt λβλα sincos +       (6) 

ttt λβλαϕ cossin
* +−=

    (7)
 

where 
2/122 )( βα +  is called the amplitude and )/(tan 1 αβ−

 is the phase. As with the 

linear trend, the cycle can be built up recursively, leading to the stochastic model.  
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Then the cyclic component tϕ  is modeled of the form.
 

 

 

Here ρ  is the damping factor, where 10 ≤≤ ρ  and the disturbances tυ   and 
*

tυ  are 

mutually independent white noise disturbances with zero mean and common variance
2

υσ . 

This results in a damped stochastic cycle that has time-varying amplitude and phase, and a 

fixed period equal to λπ /2
. 

The parameters of this UCM are the different disturbance 

variances, 
2

εσ , tδ  ,
 tτ  , and

2

υσ , the damping factor ρ , the frequency λ
.
The model is 

stationary if ρ  is strictly less than one, and if  λ  is equal to 0 or π it reduces to a first-order 

autoregressive process. 

 

Residual analysis and forecasting    

           

A useful diagnostic tool for investigating the randomness of a set of observations is the 

correlogram. Residual diagnostic plots are useful for checking the normality and the 

randomness in the residuals. For the fitted models, distribution of auto correlation function 

residuals were examined graphically as well as tested. After verification of the assumptions 

of residuals of the selected model, model was used to forecast the values from 2013 to 2017. 

The PROC UCM of SAS was used for model fitting. 

 

 

RESULTS AND DISCUSSION 

 

 
The time series plot of annual coconut production showed the positive trend (Fig. 1). With 

this positive trend in the data, all possible components such as cycle and irregular component 

was tested by using a UCM of the form. 

 

ttttY εϕµ ++=
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Fig. 1. Time series plot of annual coconut production (1950-2012) 

 
At the first stage, analysis was aimed to rectify the existing component in the model by UCM 

technique. Error variances of the irregular, level, slope, and cyclic components were 

considered as free parameters of the model and their estimates are showed in the Table 1. 

These estimates, their corresponding t-values and the associated P values were used to test 

the hypothesis of the form. 

 

H0: Corresponding component is non-stochastic  

Ha: Corresponding component is stochastic  

 

According to the Table 1, disturbance variances for the level and slope components are not 

significant. This suggests that a deterministic trend model may be more appropriate and level 

and slope can be treated as constant.  

 

Table 1. Final Estimates of the Parameters 

Component Parameter Estimate Std. Error T value Pr>t 

Irregular Error variance  3238.54 15623.1 0.21 0.8358 

Level Error variance 14484 8806.1 1.64 0.1000 

Slope Error variance 0.000124 0.08968 0.00 0.9989 

Cycle Damping factor 0.76777 0.1486 5.17 <.0001 

Cycle Period 3.885 0.3272 11.87 <.0001 

Cycle Error variance 17067 8258.8 2.07 0.0388 

 

However whether model is deterministic or not, cannot be determined from estimates of 

parameters of stage 1 (Table 1) and it should be determined from the second stage analysis, 

which is the significant analysis of component. In addition, significant analysis of component 

helps to decide if level and slope can be dropped from the model after testing the following 

hypothesis,  

 

H0: Given component is not significant   

Ha: Given component is significant 
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The goodness of fit of the analysis of components is shown in Table 2. According to Table 2, 

slope is not significant and can be dropped from the model. However, level is significant and 

cannot be dropped from the model thus the model is a stochastic model. The contribution of 

irregular component is also not significant, but since it is a stochastic component, it cannot 

be dropped from the model. 

 

Table 2.  Significance Analysis of Component (Final State)  

Component DF Chi-square P>chisq 

Irregular 1 0.01 0.9320 

Level 1 515.86 <0.0001 

Slope 1 0.27 0.6048 

 

At the third stage, slope variance was fixed and free parameters were obtained. Accuracy 

measures, AIC and BIC with fixed slope models were recorded as 810.72 and 820.84 

respectively and likelihood optimization algorithm converged at 21 iterations. After fixing 

the slope, MAPE was 9.66 and the estimated period of the cycle was 11.30 years. The 

estimate of the damping factor was 1, suggesting that the periodic pattern of production does 

not diminish quickly as shown in Fig. 2. 

 

 

 

Fig. 2. Smooth cycles with constant slope. Note that dotted line indicates the beginning 

of forecasted values.    

 
Residual analysis            

 

Fig. 3 clearly indicates that residuals have the normal distribution (P = 0.79 from Anderson 

Darling test). According to Fig. 4, the indication is that there is no serious violation of auto 

correlation assumption. 
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Fig. 3. Distribution of residual for fixed slope,  normal, kernal  

 

Fig. 4. ACF for fixed slope,  two standard errors 

 
Forecasting 

 

Smooth trend for the production is shown in Fig. 5.  

 

Fig. 5. Smooth trend for the production ( actual, --begining of forecasted values,  

95% confidence limits) 

 

Observed, fitted and forecasted values for fixed slope structural time series model is shown 

in Table 3. According to Table 3, forecasted error percentages for past five years were below 

4% except in 2010. In fact, large error percentage for the year 2010 could be due to the 

unusual value for 2010 compared to other years. Forecasted value for 2013 is 2739.1 million 

nuts. 
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Table 3. Observed, fitted and forecasted values for fixed slope 

 

Year Obseved value Fitted / forecasted 

values 

95% limit 

Lower            Upper  

Absolute 

% Error 

2008 2908 2800.9 2231.7 3370.2 3.68 

2009 2762 2808.5 2212.1 3404.9 1.68 

2010 2317 2798.8 2176.4 3421.1 20.79 

2011 2808 2777.6 2130.9 3424.3 1.08 

2012 2802 2754.4 2085.2 3423.6 1.69 

2013  2739.1 2048.7 3429.5  

2014  2739.3 2028.3 3450.3  

2015  2758.0 2026.2 3489.7  

2016  2792.4 2039.1 3545.8  

2017  2835.3 2059.0 3611.5  

 

 

CONCLUSION 

 

UCM with slope variance zero seems to fit the annual national coconut production data well. 

Forecasted error percentage for years of 2011 and 2012 were 1.08% and 1.69% respectively. 

Obtained model predicted the annual coconut production of 2739.1 million nuts in 2013 and 

the 95% CI is 2048.7, 3429.5. UCM models can effectively be utilized for the time series 

modeling of perennial crop production, especially that are of non-stationary.   
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